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Automatic Detection of Nonverbal Behavior 
Predicts Learning in Dyadic Interactions  

Andrea Stevenson Won, Jeremy N. Bailenson, Joris H. Janssen 

Abstract— Nonverbal behavior can reveal the psychological states of those engaged in interpersonal interaction.  Previous 
research has highlighted the relationship between gesture and learning during instruction. In the current study we applied 
readily available computer vision hardware and machine learning algorithms to the gestures of teacher/student dyads (N = 106) 
during a learning session to automatically distinguish between high and low success learning interactions, operationalized by 
recall for information presented during that learning session.  Models predicted learning performance of the dyad with 
accuracies as high as 85.7% when tested on dyads not included in the training set.  In addition, correlations were found 
between summed measures of body movement and learning score. We discuss theoretical and applied implications for learning. 

Index Terms— natural dataset, machine learning, gesture recognition, collaborative learning 
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1 INTRODUCTION
TTENDING to nonverbal behavior is a key compo-
nent of teaching and learning.  Beyond the meaning-

ful gestures that explicitly support content [1], body 
movements relate to the attitudes of the participants and 
outcomes of interactions.  Gesture and posture in educa-
tional contexts have thus been examined for what they 
may reveal about teaching and learning (for a review, see 
Roth, [2]).  In the following pages we review previous 
work investigating the role of nonverbal behavior in 
teaching and learning.  We discuss related work on au-
tomatically detecting affect and other mental states. We 
then describe a new study utilizing computer vision and 
machine learning to predict the outcome of teach-
ing/learning interactions, based on the general tracked 
body movements of the interactants. 

1.1 Gestures in Teaching and Learning 
A number of studies have examined the relationship 

between students’ nonverbal behavior and attentiveness 
and comprehension. For example, students’ nonverbal 
behaviors have been recorded and correlated with ob-
servers’ reports to predict students’ levels of engagement, 
with the goal of developing automated systems that could 
help predict and assist learning. Mota and Picard [3] used 
a pressure sensitive chair to track the posture cues of 
children performing a learning task at a desktop comput-
er, relating these cues to observers’ ratings of the chil-
dren’s levels of interest.  Static postures and sequences of 
postures were tracked with the goal of developing auto-
matic detection systems that could be used both to refine 
current understanding of behavior during learning, and 
to allow for the development of learning tools.  In 2008 

Dragon and colleagues [4] observed students using a 
computer tutor, and coded physical and affective behav-
iors.  A separate group of researchers then used this data 
to design an intelligent tutoring system that used posture 
and facial feature tracking to detect learner affect and 
adjust the computerized tutor accordingly to optimize 
learning [5],[6]. These efforts provide a foundation for 
further research to improve learning via detecting non-
verbal behavior. 

Since successful communication between teacher and 
student is one critical component of the learning process, 
development of teacher/student rapport via synchronous 
nonverbal behavior has also been examined in a teaching 
context.  In a 1976 study using human coders, LaFrance 
and Broadbent [7] recorded classroom behavior, noting 
whether students in small classroom settings a) mirrored 
(copied their teacher’s movements on the other side of 
their body; for example, raised the right hand when the 
teacher raised his or her left hand) b) matched (copied 
their teacher’s gestures using the same side of their body; 
for example raised the right hand when the teacher raised 
his or her right hand) or c) had incongruent behavior (not 
perceived by observers to echo that of the teacher in any 
way).  The researchers found a correlation with syn-
chrony (either mirrored or matched movements between 
teacher and student gestures) and students’ self reports of 
involvement and rapport.  Similarly, Bernieri [8] had 
coders rate perceived movement synchrony (described as 
“simultaneous movement, tempo similarity, and smooth-
ness”) of high school students in teaching/learning dy-
ads.  The synchrony of the teaching interaction correlated 
with students’ self-reported rapport.  In a recent sudy [9], 
reciprocal gestures (coded by humans) between teachers 
and students engaged in a language task not only corre-
lated with reported rapport, but also with higher student 
quiz scores.  

Traditionally, research on nonverbal behavior has tak-
en advantage of humans’ top-down observational ability 
to perceive gestalt phenomena such as synchrony by 
using human observers to code recorded data, as seen in 
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many of the studies described above. However, hand-
coding nonverbal behavior is extremely labor intensive. 
Data must be recorded and coded post-task, or observers 
must watch the participants in real time.  In addition, 
observers bring their own biases to the interpretation of 
behaviors, and may be influenced by other factors such as 
facial expressions or the content of the conversation. 
Thus, this kind of monitoring is expensive and slow, and 
it is difficult to process large amounts of data quickly or 
to evaluate various channels independently.  In the cur-
rent study, leveraging the automatic detection and analy-
sis of gesture allowed us to examine large datasets. The 
research described in this paper seeks to build on previ-
ous work by incorporating a more bottom-up method of 
assessing the importance of body movements in a natu-
ralistic environment. 

1.2 Automatic Detection and Analysis of Gesture 
As an alternative to human observation and coding, re-
search on automatically detecting and analyzing nonver-
bal behavior to predict emotions and other affective states 
has proceeded on many fronts over the past few decades. 
Combining facial expression with other modalities, 
Meservy and colleagues [10] used head and hand move-
ments to detect deception using video recordings.  Simi-
larly, Karpouzis and colleagues [11] used multimodal 
signals, including facial expression, hand gestures, and 
prosody (pitch and rhythm of voice) to detect naturally 
occurring emotion during an interaction between a hu-
man and an embodied agent.  Research using facial track-
ing alone to predict outcomes includes detecting and 
identifying facial expressions [12]; distinguishing be-
tween similar facial expressions, such as frustrated or 
delighted smiles [13]; and identifying the tendency of 
participants to make mistakes in a task [14].  Finally, re-
cent work combines the affective measurements from the 
individuals in an interaction to assess outcome [15]. 

Gestural and postural information, especially large-
scale body movements, may be easier to access in natural 
conditions than other information.  For example, facial 
expressions can be obscured by makeup, eyeglasses, or 
facial hair.  Lighting conditions, occlusion, or head posi-
tion may also make these expressions difficult to read.  
Ambient sound may confuse audio cues, and physiologi-
cal signals may impose prohibitive constraints.  Especially 
in nonlaboratory environments, large-scale movements 
can be an important addition to other modalities. 
     As Kleinsmith and Bianchi-Berthouze [16] and others 
[17] demonstrate in their assimilation of the literature, 
much of the current research on detecting affect has fo-
cused on facial expressions, speech, and physiological 
signals. However, assessing gross signals of body move-
ment, such as gesture and posture, also hold great prom-
ise for predicting and interpreting affective states. Move-
ments potentially indicate general states of mind that are 
not necessarily specific to the verbal content of the con-
versation, and indicate the continuous evolution of these 
states in dyads.  Particularly in interpersonal interactions, 
gestures may provide complementary information to that 
derived from facial expressions [18] or tone of voice be-

cause body movements are not subject to the same degree 
of conscious control [19]. Gestures and body movements 
can alter how people conceptualize abstract concepts [20] 
and even their sense of their own dominance {21].   

Body gestures specifically have been used to predict 
affect.  Kapur and colleagues [22] used a six-camera sys-
tem to capture the X, Y, Z positions of 14 markers on five 
participants enacting four emotions. Machine learning 
was then used to classify the recorded gestures as indicat-
ing sadness, joy, anger or fear.  Another experiment used 
video analysis of enacted motions [23] to distinguish be-
tween joy, anger, pleasure and sadness. In this experi-
ment, participants were asked to use repeated arm 
movements for each emotion, so the classification was 
based on expressivity, rather than on gestures particular 
to a specific emotion.  As part of an experiment assessing 
interpersonal touch via haptic devices, Bailenson and 
colleagues [24] demonstrated that a simple, two-degree of 
freedom device could transmit emotions via hand move-
ments.  In addition to these enacted emotions, natural 
emotions have been detected using touch on a screen 
during game play, which was used as the input to allow 
the automatic discrimination of four emotional states [25]. 
Similarly, the movements of players in a video game that 
tracked body movements were captured and used to 
predict affective states, with accuracies comparable to 
those of human observers’ predictions [26]. In another 
example, when an audience viewed recorded videos of a 
speaker, the speaker’s automatically tracked gestures 
predicted online ratings of that video [27]. 

Nonverbal communication predicts a variety of out-
comes in interpersonal interactions, sometimes using very 
short time periods (also called “thin slices”) of interaction 
[28].  Some examples of thin slice prediction based on 
nonverbal behavior include the rate at which doctors 
were sued for malpractice based on the doctor’s tone of 
voice during routine office visits [29]; ratings of teachers’ 
bias based on ratings of their nonverbal behavior (but not 
their verbal behavior) when speaking to students [30]; 
and the overall and session level success of psychothera-
py based on the automatic coding of patient/therapist 
gestural synchrony [31].  These experiments imply great 
potential for detecting affect, predicting outcomes, and 
providing feedback to alter the course of an interaction 
using very short glimpses of an interaction. 

In the following study, we leverage current technolo-
gies to measure gesture to predict the outcome of a teach-
ing-learning interaction. 

1.2.1 Collecting and Processing Data 
A key component of these kinds of automated systems 

is using computer vision to collect data.  While collecting 
gesture automatically via computer is challenging, past 
research indicates that body movements, even when rec-
orded as relatively coarse measures of movement, are 
indeed useful for assessing behavior.  The history of 
point-light displays illustrates the amount of information 
available from very sparse amounts of nonverbal infor-
mation. Since Johansson [32] first showed that human 
observers were capable of distinguishing biological mo-
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tion using films of confederates wearing black clothing 
and light markers on major joints, other studies have 
demonstrated that humans are able to identify gender 
[33], sexual orientation [34], depression [35], and emotion 
[36] from this kind of minimal information. 

Computer vision systems that detect human motion 
have often relied on analogous systems of optical markers 
worn on the body to track movement over time.  Similar-
ly, new video game interfaces such as the Nintendo Wii 
or Sony Move require wands or other sensors in order for 
the users’ motions to be captured.  The disadvantage of 
these kinds of interfaces is that they require the user to 
wear or use particular devices, which can be intrusive or 
even distracting [37]. The recent trend of using active 
computer vision, for example, the infrared systems that 
are employed in the Microsoft Kinect, provides a com-
promise between accuracy and unobtrusiveness, thus 
increasing the range of possible applications. This can be 
seen in recent papers successfully using Kinect to detect 
specific gestures, such as pill taking, in naturalistic envi-
ronments [38],[39]. 

1.2.2 Study Design
Previous work that has utilized automatic systems to 

examine nonverbal behavior in the domain of teaching 
and learning has often focused more on design than eval-
uation.  Metrics often concentrated on particular aspects 
of either the teacher or the student’s contributions 
[3],[4],[6], and few studies have combined an objective 
measure of learning with input from both. We describe an 
experiment determining whether the outcome of a teach-
ing/learning interaction could be predicted using natu-
ralistic body movements captured by commercially avail-
able video game hardware.   

We conducted a study assessing the interaction be-
tween teachers and students in a naturalistic environment 
attempting to predict the outcome of a teaching/learning 
task.  By using unobtrusive interfaces, we hoped to record 
naturalistic gestural and postural data. Using a large 
number of teacher/student pairs, we aimed to capture 
general information about teacher/learner interactions.  
Following previous research in education [40], we broke 
our dataset into subsets of increasingly extreme high- and 
low-success pairs.  This allowed us to identify behaviors 
that could be more apparent in extreme cases.  In order to 
move beyond self-reported or observer-coded rapport or 
engagement, we administered a written memory test as a 
first step towards measuring learning outcomes. Finally, 
we limited our focus to body movements grouped by five 
body regions but avoided defining any specific gestures, 
for example, nodding the head to indicate agreement.  For 
a description of gesture categories see Roth, [2].  In this 
way, we were able to examine regions of the body in an 
anatomically meaningful way (by grouping movements 
by the arms, legs, and torso/head regions) while avoiding 
analyses based on specific gestures. 

 METHODS AND MATERIALS 

2.1 Participant Population 
An initial convenience sample of 160 participants (80 
teacher-student pairs) was composed of undergraduate or 
master’s students from a medium-sized West Coast uni-
versity, ranging in age from 18 to 22. The sample was 
evenly divided between male and female participants, 
who were randomly assigned to mixed or same-sex pairs. 
Twenty-seven participant pairs were removed due to 
equipment failure, or lack of sufficient amounts of track-
ing data that was matched for both participants, leaving 
53 pairs (52 women and 54 men across all pairs).  Partici-
pants received either course credit or a 15-dollar gift card 
for their participation.  All participants signed an in-
formed-consent form before beginning any part of the 
experiment. 

2.2 Apparatus 
Two Microsoft Kinect [41] devices were used to capture 
participants’ gestures and postures.  These interfaces use 
an emitter and an infrared camera to capture body 
movement without requiring users to wear markers or 
hold any device. The cameras are integrated into a small 
panel, approximately 12 x 6 x 5 inches in size, which 
weighs approximately 3 pounds.  This small size and 
light weight allows the device to be wall-mounted or set 
on a tabletop.   
    Although the Kinect used in this experiment did not 
capture facial expressions or detailed hand movements, 
its tracking is noninvasive and can operate in low light 
conditions at distances between 1.22 to 3.65 meters. For 
this experiment, two Microsoft Kinect devices were used 
simultaneously. 
 
 
 

 

 

 

 

 

 

 

 

Fig. 1. A bird’s eye view of the positions of the participants in rela-
tionship to the Kinect cameras mounted on the walls. 
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2.3 Procedure 

The first participant, or teacher, was directed to stand on 
a tape marker in the main lab room, facing the researcher.  
Kinect cameras were attached to the walls in front and to 
the right of each participant, so that each participant’s 
movements were recorded without being obscured by his 
or her conversational partner, as shown in Fig. 1. This 
position was piloted to make sure the Kinects accurately 
tracked participants. 

The researcher informed the teacher participant that he 
or she would be verbally taught a list of fifteen environ-
mental principles, along with examples that helped to 
illustrate those principles (See Appendix A).  After this 
brief teaching session, he or she would then teach that 
material verbally to a second participant.    

The material to be taught was intended to be novel to 
most participants.   This allowed us to examine a large 
number of teachers who would all be on approximately 
equal footing with each other, and also allowed us to 
examine body movements that were not specific to the 
material.  If the material required the use of specific ges-
tures (such as describing volume or direction) or if an 
experienced teacher had developed a routine for teaching 
the material, it might be more difficult to generalize from 
those movements. 

After the researcher recited the fifteen principles and 
examples to the teacher participant, a second participant, 
the student, was brought in. The teacher and student 
were introduced.  The experimenter then stated that the 
teacher would have five minutes to teach the list to the 
student, after which they would both take a brief written 
test. The experimenter then left the room and the partici-
pants began the interaction. Both participants were rec-
orded by the Kinects throughout. 

At the end of five minutes, or when signaled with a 
raised hand by the teacher participant, the researcher 
reentered the room and seated participants in separate 
rooms to take a written free-recall test.  Participants listed 
as many of the principles that they had just been taught 
as they could remember. A free recall test was selected in 
order to maximize the variance in responses. 

2.4 Measures 
The 15 answers on the test were graded by two raters 
trained in the use of a key provided by the researcher. 
Since these were free responses, there was some subjectiv-
ity in the gradings. The rater’s initial scores correlated at 
.89.  To provide the most stable dataset, two raters dis-
cussed the scores to resolve differences in order to come 
to a complete consensus on the entire dataset.  Student 
and teacher accuracy scores correlated at .53.  In order to 
account for the teachers’ ability to recount the principles, 
the students’ scores were transformed as a percentage of 
the teachers’ scores for each test.  Thus, if the teacher 
scored eight on the free recall test, and their student also 
scored eight, the student would receive a score of 1.0 (i.e., 
100%).  If the teacher scored 14 on the free recall test, and 
their student only scored seven, the student would re-
ceive a score of 0.5. Correct free recall scores for all teach-
ers ranged between 0.4 (six correct answers) and 0.93 (14 
correct answers), with a mean of 0.63 and a SD of 0.14. 

 
 

 

 

 

 

 

 

 

Fig. 2. Histogram of raw teacher free recall test scores, which are 
approximately normally distributed. 

 

 

 

 

 

 

 

Fig. 3. Histogram of student free recall test scores transformed as 
percentage of teachers’ scores.  Note there are scores higher than 
1.0 as some teachers may have mentioned items to the students but 
not listed those items on the recall test. 

Adjusted scores for all students ranged between 0.13 and 
1.33, with a mean of 0.72 and a SD of 0.21. A few students 
reached scores higher than 1.0 as some teachers may have 
mentioned items to the students but then failed to list 
those items themselves on their own recall test. Histo-
grams of the teachers’ scores (Figure 2) and the students’ 
adjusted scores (Figure 3) are shown above. 

Since machine learning allowed us to use a bottom-up 
approach to capture multiple aspects of gesture, we 
wanted to cast a wide net for our initial analysis address-
ing the central question of whether nonverbal behavior 
could predict learning, but also examine how the behav-
iors of dyads at various levels of extremity might differ.  
By removing the middle of the distribution in the ma-
chine learning classification, we avoided having to decide 
that a score of 0.73 was "bad" while a score of 0.75 was 
"good."  Using the distribution from Figure 3 based on the 
ratings of success, we divided the pool of participant 
pairs into several different divisions of high and low.  We 
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started with an inclusive definition of high and low scor-
ing pairs, taking the top 27 pairs, with scores above 0.70 
and the bottom 23 pairs, with scores below 0.67. These 50 
pairs formed our Inclusive subset. We then moved to a 
narrower definition of high and low scoring pairs, using 
only the top 15 pairs, with scores at or above 0.80, and 
bottom 16 pairs, with scores at or below 0.60, to create our 
Moderate subset.  Finally, we took only the extremely high 
and low scoring pairs, comparing the seven participant 
pairs in which the student had scored 0.92 or more, and 
the seven pairs with a score of 0.50 or less.  These 14 pairs 
comprised our Exclusive subset. 

In each instance, we had a nearly equal number of data 
points in each of the two classes, resulting in a baseline 
(chance) performance of approximately 50% as a compar-
ison point for the success of our classifiers and selected 
features.   

2.5 Nonverbal Feature Extraction 
The Kinect output consisted of gesture and posture in-
formation from each of the teacher-student dyads time 
stamps. Then it was labeled according to which Kinect 
was recording the teacher and which was recording the 
student.  Interaction time between teacher and student 
lasted approximately three minutes.  In order to ensure 
that we used exactly the same amount of data from all 
interactions, we only used the first two minutes of each 
interaction, as some interactions went longer than others. 
This provided us with the most consistent data set, as we 
did not keep pairs for which the first few seconds of data 
were not available for both participants. Each Kinect rec-
orded at 30HZ, resulting in approximately 1800 frames 
per minute (30 frames per second) for each participant in 
the interaction.  The X, Y, Z positions of the 20 nodes used 
by the Kinect to represent the joints of the skeleton were 
recorded, as well as the overall position of the participant 
in the room calculated by combining those 20 nodes.  In 
addition, for each frame, data was collected on whether 
each node was tracked, inferred, or not recorded at all. 

We used sixteen of the twenty nodes to create the 
modified skeleton seen in Figure 4.  We ignored the aver-
aged node that represented the overall position of the 
participant, because there was very little variance in this 
metric due to experimental instructions to the partici-
pants to stay on their respective tape marks. We also 
eliminated four nodes (both hand and both foot nodes), 
which were not tracked as accurately as the other nodes 
and were close enough to the wrist and ankle nodes to be 
fairly redundant.  These four deleted features are repre-
sented in gray on Figure 4. 

To define our features, we calculated the angles for 
each Kinect skeleton joint, extracting 18 angles per skele-
ton (e.g., the angle between the spine-to-left-shoulder 
“bone” and the left-shoulder to left-elbow “bone”).  We 
were not seeking to identify specific gestures using top-
down knowledge of nonverbal communication. Instead, 
we sought to capture more general qualities of body 
movement, while staying true to the body’s natural anat-
omy within the confines of the Kinect skeleton. The an-
gles for the movement features were calculated by taking  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The modified skeleton derived from Kinect data output in the 
form of a wireframe. The wireframe consists of 16 nodes with X, Y, 
and Z values. The nodes in gray were not used in analysis. Angle α 
describes an example of the angles that we extracted as features.  In 
this case, the angle that represents the shoulder was created from 
the spine, left shoulder, and left elbow nodes. 

the cosine value of two vectors.  An example below 
shows the distance between the shoulder (S) and elbow 
(E) nodes (1) and the elbow and wrist (W) nodes (2). 

 

(1)    
 

 (2) 
Then, the angle between the two parts was calculated 
using the distance between the two points, as in the fol-
lowing equation:  

 

(3) 
 
Some nodes were involved in multiple “joints”, result-

ing in more angles than the number of nodes.  For exam-
ple, the left hip node formed an angle with the left ankle 
and left knee nodes that roughly corresponded to the 
movements of the left knee joint.  However, the hip joint 
node was also part of another angle with the spine and 
left knee that roughly represented the movement of the 
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left hip.  All angles used are shown in Table 1. 
From each angle we derived a trace of its movement 

over time, representing the measurement of the angle at 
each frame, at 30 frames per second. From the changes in 
this angle from frame to frame we took three measures: 
mean, standard deviation, and skewness. Thus, for each 
participant in the dyad, we recorded 54 angle features 
(three measures for each of 18 angles).   

Thus, the mean represented the average angle of the 
joint, and the standard deviation represented the amount 
that that angle varied over time.  Skewness represented 
the fact that people may move or bend a joint further 
(over a wider range) in one direction, and was thus a 
measure of how much each gesture deviated from the 
mean, rather than a temporal measure of differing ges-
tures at the beginning or end of an interaction. Thus com-
paratively large changes in angle would pull the mean 
away from the mode, skewing it in the direction of these 
dramatic changes in angle.  The formula for skewness is 
shown below.  X represents the variable X,  represents 
the mean, and  represents the standard deviation. 

 

Ʃ  

(4) 
 

Finally, in order to reduce the redundancy of our fea-
ture set and create features that related more clearly to 
human gestures, we grouped the angle measures into five 
categories roughly corresponding to the each partici-
pant’s right arm, left arm, right leg, left leg, and tor-
so/head. Creating averages of mean, standard deviation, 
and skewness for all the angles between body segments 
within a body region also allowed us to minimize the 
effects of occlusion on extremities (e.g., it was unlikely for 
all joints in a body region to be occluded at once).  Each 
measure represented the entire interaction, such that 
there was one of each for the entire two-minute period. 

In order to make sure that the movements of the teach-
er and the student were being recorded during the identi-
cal time period, we matched both the beginning and end-
ing timestamps of the north and west Kinects. This en-
sured that, although our measures were summary 
measures of the entire time period, they covered exactly 
the same interval. 

2.6  Classification  
In order to generalize our results, we compared three 

different algorithms, a strategy similar to those employed 
by previous research [13].   To reduce the risk of overfit-
ting and adjust for the fact that our features were not at 
all independent, we used correlation-based feature selec-
tion as a starting point to find the most useful features, 
and the optimal number of these features, to use for our 
predictions, as described by Salvagnini and colleagues 
[27].   

 
 
 

 
TABLE 1 

MOVEMENT FEATURES 

 
Because we had a relatively small data set, we used leave-
one-out cross validation as discussed by Witten and 
Frank [42]. For our outcome measure, we compared the 
success rates in predicting the students’ transformed 
scores.  In order to examine predictive ability between 
different extremes of successful and unsuccessful teacher 
and student pairs, we divided the dataset into three dif-
ferent cutoff groups, following Baron’s general strategy 
[40].  We also examined which feature sets were most 
predictive in order to look for meaningful explanations.  

In order to be sure that our measures of accuracy were 
conservative, we strictly separated training and testing 
data, following the procedure of Castellano, Villalba, and 
Camurri [23] and Hoque and Picard [13].  Each algorithm 
was evaluated using leave-one-out cross-validation, re-
moving one dyad in each subset of the data from the 
original data set to be used as the test data, and all other 
dyads remain as training data. This was repeated for each 
dyad in each subset with the test samples removed prior 
to both feature selection and classifier training, in order to 
ensure that neither process would overfit to the training 
dataset.  In other words, one pair was held out as the test 
sample prior to feature selection. After feature selection, 
the number of predictors in the dataset was reduced to 
only the selected features. The resulting model was then
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tested on the original held-out pair, producing a hit, a 
miss, a false positive, or a correct rejection.  This 
train/test procedure was repeated n times, until all pairs 
had been used as the test sample, and the results were 
summed over the entire interaction.  Thus, the pair on 
which the prediction had been made had not been used 
for either feature selection or training in that fold. 

Following Castellano and colleagues [23], we used a 
filter-based method of feature selection; correlation-based 
feature subset evaluation.  In this filter method, individu-
al features are evaluated based on their predictive ability 
as well as the degree to which they are redundant with 
other features.  This helps to reduce a dataset with many 
features that are not independent.  

We selected a decision tree algorithm (J48), in order to 
help us visualize possible relationships between the data. 
We selected Multilayer Perceptron (MP) since it is opti-
mized to accurately fit nonlinear patterns in the data.  We 
selected Logistic Regression (LR) because it is a relatively 
simple but useful classifier to provide a baseline for other 
classifiers, and it is less likely to overfit than more com-
plex classifiers.  Thus, by selecting these three, we tried to 
create a diverse sample of the available classifiers. 

 
2.7 Tracking Accuracy 
The accuracy of the Kinect system compared to other 
motion capture systems has been tested by other re-
searchers who have found it to be sufficiently accurate to 
use in naturalistic settings such as the workplace, even if 
less accurate than other motion capture techniques [43].  
However, the format of our experiment may have added 
extra challenges to tracking. Since the two participants 
were standing at a conversational distance from one an-
other, some of their gestures may have occluded their 
conversational partner from their respective cameras.  In 
this case, we would expect lower tracking on the right 
side of participants who were recorded by the Kinect on 
the north wall, and lower tracking on the left side of par-
ticipants who were recorded by the Kinect on the west 
wall (see Figure 1).  In order to estimate whether or not 
this occlusion took place, we examined the degree to 
which nodes were inferred or tracked during the course 
of the interaction in a random subsample of 12 partici-
pants (see Table 2). Occlusion was noted in the elbow, 
wrist and ankle nodes italicized in the table but differ-
ences elsewhere in the body were less than 5%.   
     In order to use a conservative measure of accuracy, we 
only used data that was tracked, and did not include 
inferred data.  In order to be conservative about potential 
synchrony in our summary measures, for each dyad, we 
only included time stamps for nodes for which both par-
ticipants had both nodes tracked (as opposed to in-
ferred).  In other words, if the teacher's wrist node was 
not tracked in a given frame, the student's right wrist 
node would also be dropped for that time stamp, and 
none of the angles associated with that node for that time 
stamp would be calculated. 
 
 

TABLE 2 

PERCENTAGE OF TRACKED VS INFERRED NODES 

 
Table 2.  The percentage of nodes tracked as opposed to inferred by 
the North and West Kinects.  Nodes that showed a difference in 
accuracy between North and West Kinect recordings of greater than 
5% are italicized. All dyads were counterbalanced, such that teach-
ers were randomly assigned to be recorded by either the North or 
West Kinect.  This was done to ensure that Kinect assignment would 
not be confounded with participant role. 

3 RESULTS
Our goals were to predict high and low success interac-
tions, to begin to assess which features might be driving 
those interactions, and to find how more inclusive catego-
ries of high and low scoring pairs might increase predic-
tive power.  

Table 3 presents the results. Using only a few coarse 
measures of nonverbal features during a two-minute 
interaction, we were able to predict whether a teach-
ing/learning interaction would be successful or unsuc-
cessful when looking at more exclusive subsets.  

Hits are correct identification of a pair as “good”, 
misses are the incorrect identification of a pair as “bad”, 
correct rejections are the correct identification of a pair as 
“bad” and false positives are the incorrect identification 
of a pair as “good.” Across all subsets, the J48 Decision 
Tree algorithm provided the highest degree of accuracy, 
reaching 85.7% for the Exclusive subset.  This was signifi-
cantly above the chance rate of 50% (p < 0.05). Accuracies 
were highest for all classifiers used when comparing the 
most extreme cases of success or failure, with the Exclu-
sive subset of participants.  Accuracies declined as the 
subsets became more inclusive, reaching chance when 50 
out of the original 53 pairs were included in the 
good/bad division. 

In order to ensure that overfitting did not occur on the 
Exclusive dataset, we compared LOOCV to five-fold 
cross-validation, averaging the accuracy over the five 
repetitions. The patterns of accuracy were similar, with an 
average accuracy of 74.8% over all three algorithms for 
the five repetitions (M = 84.3% for J48, M = 68.6% for MP, 
M = 71.4% for LR).  
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TABLE 3 

PREDICTING TEACHING/LEARNING SUCCESS 

  Hits    Misses   Correct         False        Accuracy 
               Rejections   Positives 

Exclusive (14 pairs)___________________________ 
 
J48               6              1               6               1                 85.7% 
MP      6       1               4               3                 71.4% 
LR      6              1               4               3                 71.4% 
 
Moderate (31 pairs) ___________________________ 
J48               6       9        16            0               71.0% 
MP      5     10              16               0               67.7% 
LR      7              8              10               6               54.8% 
 
Inclusive (50 pairs)____________________________ 
 
J48             27         0         0               23               54.0% 
MP    21         6             3               20               48.0% 
LR    18                9             4               19               44.0% 
 
Table 3.  Inclusive indicates the top 27 and bottom 23 pairs, Moder-

ate the top 15 and bottom 16 pairs, and Exclusive the top 7 and 

bottom 7 pairs.  The classifiers used were decision tree (J48), Multi-

layer Perceptron (MP) and Logistic Regression (LR). 

 

Figure 6 shows the different predictive features for 
each subset.  For each subset, between one and five fea-
tures were chosen for each fold. In order to provide the 
most predictive features, we used the features that ap-
peared in at least 10 percent of the 25 folds in five fold 
cross-validation repeated five times.  The distribution of 
features can be found in Table 4. 

In order to learn more about the relationship between 
features and the outcome, in addition to the machine 
learning algorithms, we also computed correlations be-
tween features and the outcome of the students’ adjusted 
scores. Table 5 presents those results. Summed mean, 
standard deviation, and skewness measures all appeared 
as predictive features.  The correlations tended to be 
higher in magnitude for the smaller, more restrictive sub-
sets compared to the larger ones, confirming the pattern 
that the most extreme success patterns were easiest to 
predict.  The risk of type 1 errors cannot be discounted 
when dealing with large numbers of correlations.  Out of 
the 24 correlations shown, two were significant at the .05 
level, two at the .01 level, and two at the .001 level.  Since 
our feature selection was based on correlation, this is not 
too surprising, but the magnitude of some of the correla-
tions may provide a starting point for further investiga-
tion. 

  Interpreting these features can be challenging due to 
the bottom-up nature of how they were computed. The 
feature comprised of summed standard deviations of the 
movements of the teacher’s head and torso, which was 
very predictive during machine learning in the most ex-
treme division between high and low success pairs, corre-
lated negatively with the student’s transformed score for 
all subsets, at -.68.  The feature comprised of the summed 
skewness measures of the student’s head and torso 
showed a similar negative correlation of -.60.  Thus, nega-

tive skewness, or movements that decreased the mean of 
the participants’ torso angles, was predictive of outcome.  
One example of a body movement that might produce 
negative skewness would be occasional nods in a person 
who otherwise kept their head more or less upright.  This 
would pull the mean angle of the head over time below 
the median, upright. However, since neither specific se-
mantic gestures nor directionality were defined in our 
measure, interpretation remains speculative. 

Finally, since synchrony has been indicated as an ele-
ment of success in teaching and learning, we examined 
the correlations between the corresponding gestures of 
the teacher and the student, shown in Table 6. Significant 
correlations were found in two out of six features. While 
these correlations may be viewed as predictive features in 
their own right, examining synchrony will require more 
granular methods. 

4 CONCLUSION 
In the study described above, we demonstrated the ability 
of an automated affective computing system to analyze 
naturalistic body movements, and, using these move-
ments, assess the qualities of a teaching/learning interac-
tion.  Our results support the view that in such pairs, the 
nonverbal behavior of both the teacher and student can 
predict the success of the outcome.  

We will first discuss areas that could be improved and 
then address bigger questions about the direction of fu-
ture work.  Finally, we will discuss how this work inter-
sects with current and future applications of technology 
detecting affect via body movements. 

4.1 Limitations 
Our metric for learning, a brief free recall task, is neces-

sarily limited, and does not examine constructivist or 
active learning. In addition, our sample of convenience, 
which consisted of university students, may have consist-
ed of more motivated and experienced learners than the 
average. Further, since both “teacher” and “student” roles 
were filled by actual student participants, differences in 
age and authority often apparent in traditional teacher-
student roles were not present in our experiment.  Finally, 
in a normal classroom study, the teachers are experts in 
the subject matter they teach; while in our study the 
“teachers” had only learned the subject material a few 
minutes before the students.  The correlation between 
student scores and teacher scores does not take into ac-
count differences in interest, enthusiasm and prior 
knowledge.  While teachers with higher scores had more 
information to impart to students, this relationship in our 
analysis was complicated by the fact that students’ scores 
were divided by teacher scores, so that students who had 
very low scoring teachers had to list fewer principles to 
achieve a “grade” of 100%.  In addition, teachers may 
have remembered additional answers during the written 
test that they did not impart during the teaching interac-
tion, or may have forgotten to write down answers that 
they had taught to their students. Thus, our metric for 
capturing learning was imperfect.  To truly capture the 
nature of a teaching interaction, real teachers interacting 
with real students should be recorded. 
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TABLE 4 

PERCENTAGE OF FOLDS IN WHICH PREDICTIVE FEATURES APPEAR FOR EACH SUBGROUP  
 

Table 4.  These percentages reflect the number of folds, averaged across five repetitions, in which these features appear.  Features that 
appeared in fewer than 10% of folds are not listed.

TABLE 5 

CORRELATIONS BETWEEN PREDICTIVE FEATURES AND SCORE 

Table 5.  † p < .075, * p < .05, ** p < .01, *** p < .001.  Features used in machine learning analysis for each subgroup are in bold print in those 
columns. (Note that the tests involving fewer pairs are more conservative in terms of significance.) 
 

TABLE 6 

CORRELATIONS BETWEEN STUDENT AND TEACHER FEATURES  

 
Table 6.  † p < .075, * p < .05, **p < .01, *** p < .001.  Features used in machine learning analysis for each subgroup are in bold print in those 
columns. (Note that the tests involving fewer pairs are more conservative in terms of significance.) 
 

 
 
 

 
 
 
 

Fig. 5.  The three features that demonstrated significant correlations with score are plotted against the scores for each pair. 
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7 Pairs “High”, 7 pairs “Low” 15 pairs “High”, 16 pairs “Low”           27 pairs “High”, 23 pairs “Low” 

 

 

 

 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The above plots show each of the features selected as predictive in at least one fold, for at least one subset, of high and low success 
pair.  Each column represents one subset, beginning with the Exclusive subset on the left hand side.  The Y-axis of each plot represents 
degrees in the case of plots showing the mean or standard deviation (summed across joints within the body region), but is a sum of integral 
distances from the mean in the case of skewness, which can also be positive as well as negative.
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In general, the model tended to predict low-scoring 
pairs more accurately than high-scoring pairs (in other 
words, there were fewer false positives than misses, over-
all).  This may also be due to our metric of capturing 
learning.  Since success in the interaction was designed to 
take into account the teacher’s score on the material as 
well, some pairs that had a high adjusted student score 
might have had their score artificially boosted because the 
teachers simply did not remember or write down very 
many environmental principles themselves.  Thus, high-
scoring pairs included both teachers who learned the 
material well themselves, and teachers who did not.  
These pairs may have differed in their behavior. 

Other limitations due to the system design must also be 
considered. The possibility of occlusion when two partic-
ipants are standing at a conversational distance should 
not be dismissed, as we see from Table 1 that it was a 
likely cause of reduced accuracy.  However, the tradeoff 
for environmental validity may be worthwhile for many 
applications.  

Moreover, the requirement that participants be stand-
ing may also well have affected interpersonal dynamics. 
One area for useful future work is thus to examine how 
body movements may be predictive in other situations, 
such as when all participants are seated.  As technologies 
are tailored for specific environments, these limitations 
may be considered on a case-by-case basis. 

The measures that we used for our analysis were fairly 
coarse and very bottom-up.  We did not look at specific 
gestures, instead summing total movement by body re-
gion. Thus, the way in which we derived our features 
does not allow us to make predictions about the meaning 
of specific gestures.  Also it is important to remember that 
we cannot make causal inferences from the data- it would 
be simplistic to conclude that too much movement in the 
teacher’s head and torso leads to poor learning outcomes.   

4.2 Future Directions 
Following the techniques used by previous work in 

education, in this initial study we examined subsets of the 
data consisting of very high and very low scoring pairs.  
These most extreme cases were predicted with an average 
accuracy of 76.1%, and a high of 85.7%, and the magni-
tude of the linear correlations between predictive features 
and the accuracy scores generally increased as the cutoff 
became more restrictive.   

While the features chosen using our filter method were 
primarily drawn from the teachers’ movements when 
predicting the subset of the most extreme division of 
good and bad, student features were also selected as pre-
dictive when examining more general divisions at the 
Moderate level of 31 pairs.  This may indicate that while 
teacher movements differ greatly in very successful and 
unsuccessful pairs, student gestures may indicate a cer-
tain level of attentiveness that also correlated with suc-
cess.  However, in order to investigate the meaning of 
these gestures, our teaching and learning task must be 
refined. 

 Finally, some of the predictive gestures demonstrated 
significant correlations between teacher and student ges-
tures.  The two features selected to be most predictive, the 
summed standard deviations of the teacher’s head and 
torso and the summed skewnesses of the student’s head 

and torso seem likely to be related. Interactional syn-
chrony, perhaps linked with mirroring or matching be-
havior, may have been a component of the predictive 
power of the interaction, although the lack of a temporal 
component to our feature set makes it difficult to prove.  
Interpersonal synchrony has been studied in many con-
texts (for a review see Delaherche et al., [44]).  Evidence 
has been found that manipulating synchrony can increase 
rapport [45], and in two studies particularly relevant to 
learning, induced interpersonal synchrony can increase 
memory of the partner’s speech [46],[47].  The more spe-
cific synchronous behavior of mimicry appears similarly 
important in both generating and recognizing rapport 
and other affiliative behaviors (for a review, see Char-
trand [48]).  Adding ratings of rapport and correlating 
these ratings with a quantitative measure could provide 
additional support to a hypothesis of synchrony support-
ed by a more fine-grained analysis of gesture. 

Although it is tempting to over-interpret the features 
that are selected to be most significant, it is important to 
keep in mind that the set of features selected relies on 
relationships within the models that are not necessarily 
intuitive.  Further investigation is required to interpret 
these findings. 

Finally, while we examined the predictive power of 
features from both the teacher and the student, other 
features, such as proximity, were not included in our 
model. Such combined features may hold the potential of 
being very predictive, though of course research would 
need to take into account differences in culture, gender, 
age, degree of acquaintanceship and other individual 
differences.  These features are natural targets for future 
work in this area.  As suggested by other research [49], 
adding higher level, semantically interpretable features 
may improve accuracy.  In addition, beyond body move-
ment, adding the tracking of other modalities is also like-
ly to lead to greater success in affect detection [50]. 

Accuracies of 85.7% were obtainable using only 120 se-
conds of the interaction. This aligns with previous re-
search demonstrating the effectiveness of a thin slice of 
observation in interpreting interactions [28].  Determining 
whether behavior at the beginning, middle, or end of an 
interaction is most predictive is a potentially productive 
area of investigation. 

Our ability to predict outcomes also speaks to the po-
tential of active computer vision systems, such as the 
Kinect, to collect useful data in a naturalistic environ-
ment.  Although a degree of occlusion took place, as evi-
denced by the percentages of nodes that were inferred 
rather than tracked depending on the camera angle (see 
Table 1), our algorithms were still able to make predic-
tions at rates considerably higher than chance.  Although 
the skeleton derived from Kinect tracking data is clearly 
not completely anatomically accurate, we were able to 
make useful predictions without even using all of the 
available nodes.  This underlines the usefulness of low-
level features in general affect detection that is not specif-
ic to a given situation. It also implies the opportunities 
that may exist for collecting data through other interfaces, 
such as touchscreens [25]. 

Future research may include comparing changes in a 
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participant’s nonverbal behavior, and changes in out-
come, with different interaction partners.  Another ave-
nue could be to compare nonverbal behavior and out-
comes over time, which might provide clues to how in-
teractions can be guided for better outcomes.   

Another fruitful area of investigation may be consider-
ing intercultural communication through the lens of ges-
tural interaction. The presentation and interpretation of 
affect from body posture has also been shown to change 
depending on the culture of the observer [51].  Do the 
simple gestural measures we obtained from a group of 
American undergraduates apply cross-culturally?  Can 
these measures be used to improve cross-cultural com-
munication, or can other tools be built to assess these 
kinds of interactions? 

4.3 Possible Applications 
Embodiment in interactive environments is increasing-

ly validated as important to engagement, social interac-
tions, and enjoyment.  Learning what nonverbal behavior 
to track, and how it should most effectively be rendered 
in a mediated or virtual environment is important in de-
signing and assessing actions in such environments.  
Extensive and ongoing research has examined what kinds 
of nonverbal behavior embodied agents should utilize for 
greatest effectiveness [52], including how this behavior 
should be guided by the nonverbal behavior of the hu-
man conversational partner.  Further examining what 
movements may be most helpful to further an interaction 
will aid in these goals. 

Optimizing partnerships in general, either by assessing 
nonverbal behavior in real life, or mediating nonverbal 
behavior effectively, is one very interesting possible arena 
for applications.  Giving people feedback on the nonver-
bal components of their interaction in real time may allow 
them to adjust their nonverbal behavior to positively 
affect the outcome of those interactions.  For example, 
providing teachers or tutors with this kind of feedback in 
real time could improve teaching outcomes.  Physicians 
interacting with patients might use this to practice build-
ing rapport with patients.  Leveraging the tracking of 
nonverbal behavior can even be a tool to learn to reduce 
social anxiety by improving social skills (similar to recent 
work utilizing facial expression [53)], or to aid in conflict 
resolution.  In addition, such tracking of nonverbal be-
havior could be used to improve the nonverbal behavior 
of embodied agents. 

Beyond the general importance of rapport generated 
by nonverbal communication, the success of teaching and 
learning situations in particular may involve body 
movements.  Embodied cognition researchers propose 
that information processing is conducted using the body 
[54]. This view is supported by work by Goldin-Meadow 
and colleagues, which indicates that gestures may signal 
important stages in learning [55], and that the way teach-
ers recognize and react to these gestures may help to 
determine learning outcomes [56]. 

In addition, gestures and body movement in general 
can also change the person who engages in them, physio-
logically, psychologically and behaviorally.  This means 
that detecting and offering feedback on gestures and 
body movements can be leveraged to good effect in a 

number of areas. Because tracking body movements in 
particular may reveal behavior of which the participants 
themselves may not be aware, such systems may also 
hold the possibility of providing information that can 
assist an interaction in real time. For example, feedback 
on body movements has been suggested as a method to 
mitigate chronic pain [57].  Encouraging body movement 
has been proposed as crucial for game applications in 
particular [58], especially in increasing engagement, en-
joyment, and affective experiences [59][60]. Increasing the 
extent to which gestures can be tracked and incorporated 
into games has been proposed to decrease anxiety in 
movement based learning games [61] and increase social 
engagement in collaborative games [62],[63].   

Ethical concerns may well arise with the use of this 
technology to assess individual performance [64].  While 
assessing the quality of interpersonal interactions has 
obvious applications, both users and developers must be 
mindful that the measurements taken do not necessarily 
reflect the qualities of the individuals involved, but 
whether a single short-term interaction between two in-
dividuals in a dyad is likely to be successful.  Thus, this 
technology may be more usefully applied to optimize 
partnerships, for example, by providing feedback to exist-
ing dyads, or by reassigning individuals to pairs whose 
nonverbal behavior predicts better learning.  In addition, 
a balance must be struck between recording behavior 
without participants’ awareness, risking deception, and 
making participants self-conscious about being moni-
tored, which might reduce the validity of the predictions 
as well as create an oppressive environment. 

The automatic assessment of gesture can, thus, not only 
predict behavior, but also may provide users with new 
tools to understand and engage with their own behavior 
in ways that have never before been possible.  As D’Mello 
and Calvo point out, [65] more objective methods of data 
collection and analysis can guide the development of new 
technologies, as well as promote the study of affect’s im-
pact on activities in the real world. 
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